Sains Malaysiana 52(9)(2023): 2529-2543
http://doi.org/10.17576/jsm-2023-5209-05
Rare Earth Element Characterization of Bledug Kuwu Mud Volcano, Central Java, Indonesia Based on Geochemical Analyzes (Susceptibility, XRF,XRD, SEM-EDS and ICP-EOS)
(Pencirian Unsur Nadir Bumi Gunung Berapi Lumpur Bledug Kuwu, Jawa Tengah, Indonesia, Berdasarkan Analisis Geokimia (Kerentanan, XRF, XRD, SEM-EDS dan ICP-EOS))
RINA DWI INDRIANA1,*, HIJRAH SAPUTRA2, MARIYANTO MARIYANTO3, ELEONORA AGUSTINA4, MIMIN IRYANTI5
& CAHYO AJI HAPSORO6
1Department of
Physics, Faculty of Science and Mathematics, Diponegoro University, Indonesia
2Postgraduate School, Universitas Airlangga, Surabaya, Indonesia
3Department of
Geophysical Engineering, Faculty of Civil, Planning and Geo-Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
4Department of Geophysics, Faculty of Mathematics and Natural Science, Padjadjaran University, Bandung, Indonesia
5Department of Physics, Faculty of Education
of Mathematics and Natural Science, Universitas Pendidikan Indonesia, Bandung, Indonesia
6Department of Physics, Faculty of
Mathematics and Natural Science, Universitas Negeri
Malang, Malang, Indonesia
Diserahkan: 8 Mac 2023/Diterima: 22 Ogos 2023
Abstract
Mud volcano
material is generally rich in oxides, while oxides are the main compounds
forming rare earth elements. Bledug Kuwu, Central Java, Indonesia, is one of the active mud
volcanoes, so there may be rare earth elements. This research is the characterization
of rare earth elements (REE) in the Bledug Kuwu mud using magnetic and geochemical methods. Magnetic
characterization uses magnetic susceptibility measurements. The geochemical
characterization of the mud samples consisted of the XRF (X-Ray Fluorescence),
XRD (X-Ray Diffraction), ICP-EOS (inductively coupled plasma) test, and the
SEM-EDS (Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy)
test. The results of the geochemical analysis of the Bledug Kuwu mud sample were the content of quartz,
kaolinite, and calcite with an average concentration of 42.26%, 23.67%, and
33.96%. The susceptibility of Kuwu's mud is 0 because
the concentration of metal elements is low; according to the results of XRF,
XRD, and SEM tests identified the main mud elements as C, O, Si, Ca, and Al.
The rare earth elements in Kuwu's mud are Ce, Dy, Eu, Gd, Ho, La, Nd, Pr, Sm, Tb, Y, and Sc. The highest concentrations were Ce 52.22
ppm and La 47.95 ppm.
Keywords: Geochemical; mud volcano; petromagnetic; rare earth elements
Abstrak
Bahan gunung berapi lumpur umumnya kaya dengan oksida, manakala oksida adalah sebatian utama yang membentuk unsur nadir bumi. Bledug Kuwu, Jawa Tengah, Indonesia ialah salah sebuah gunung berapi lumpur aktif, jadi mungkin ada unsur nadir bumi. Kajian ini adalah pencirian unsur nadir bumi (REE) dalam lumpur Bledug Kuwu menggunakan kaedah magnetik dan geokimia. Pencirian magnet menggunakan ukuran kerentanan magnetik. Pencirian geokimia bagi sampel lumpur terdiri daripada XRF (Pendarfluor Sinar-X), XRD (Belauan Sinar-X), ujian ICP-EOS (plasma berganding induktif) dan SEM-EDS (Mikroskop Elektron Imbasan-Spektroskopi sinar-X serakan tenaga). Hasil analisis geokimia sampel lumpur Bledug Kuwu adalah kandungan kuarza, kaolinit dan kalsit dengan purata kepekatan 42.26%, 23.67% dan 33.96%. Kecenderungan lumpur Kuwu ialah 0 kerana kepekatan unsur logam adalah rendah; mengikut keputusan ujian XRF, XRD dan SEM mengenal pasti unsur lumpur utama sebagai C, O, Si, Ca
dan Al. Unsur nadir bumi dalam lumpur Kuwu ialah Ce, Dy, Eu, Gd, Ho,
La, Nd, Pr, Sm, Tb, Y dan
Sc. Kepekatan tertinggi ialah Ce 52.22 ppm dan La 47.95 ppm.
Kata kunci: Geokimia; gunung berapi lumpur; petromagnet; unsur nadir bumi
RUJUKAN
Agustawijaya, D. & Krisnayanti,
B.D. 2013. Evaluasi kebolehjadian sistem panas bumi berdasarkan aspek geokimia dan deformasi geologi untuk Gunung Lumpur Sidoarjo-Jawa Timur. Seminar Nasional III
Teknik Sipil 2013. Universitas Muhammadiyah Surakarta. G-347-G-352.
Arienzo, M., Ferrara, L., Trifuoggi,
M. & Toscanesi, M. 2022. Advances in the fate of
rare earth elements, REE, in transitional environments: Coasts and
estuaries. Water 14(3): 401. https://doi.org/10.3390/w14030401
Aslan, A.,
Warne, A.G., White, W.A., Guevara, E.H., Smyth,
R.C., Raney, J.A. & Gibeaut,
J.C. 2001. Mud volcanoes of the Orinoco delta, eastern Venezuela. Geomorphology 41(4): 323-336.
Attia,
O.E.A., Ab Khadra, A.M., Nawwar, A.H. & Radwan, G. 2012. Impacts of human activities
on the sedimentological and geochemical characteristics of Mabahiss Bay, North Hurghada, Red Sea, Egypt. Arab. J. Geosci. 5: 481-499.
Bambang, P., Handoko, T., Sunardi, E., Hadi, S. & Sawolo, N. 2012.
Mud volcano and its evolution. Earth Sciences. InTech.
doi:10.5772/24944
Barber, A.J., Tjokrosapoetro, S. &
Charlton, T.R. 1986. Mud volcanoes, and shale diapirs, wrench faults and
melanges in accretionary complex, Eastern Indonesia. Am. Assoc. Petrol.
Geol. Bull. 70: 1729-1741.
Bemmelen, R.W. 1949. The Geology of Indonesia. Vol IA. Netherland: The
Haque Martinus Nijhoff,
Government Printing Office.
Bowles,
J.E. 1984. Physical and Geotechnical Properties of Soils. McGraw Hill,
Inc.
Brand,
E.W. & Brenner, R.F. 1981. Soft Clay Engineering. Elsevier Scientific
Publishing Company.
Brindley,
G.W. & Brown, G. 1980. Crystal Structures of Clay Minerals and Their
X-Ray Identification. Mineralogical Society of Great Britain and Ireland.
Vol. 5. https://doi.org/10.1180/mono-5
Brown, K. 1990. The nature and hydrogeologic significance of mud
diapirs and diatremes for accretionary systems. J. Geophys.
Res. 95: 8969-8982.
Carretero, M.I. 2020. Clays in pelotherapy. A review. Part I: Mineralogy,
chemistry, physical and physicochemical properties. Applied Clay
Science 189: 105526.
Chen, F.H.
1975. Foundation on Expansive Soil, Development in Geotechnical Engineering Vol. 12. Amsterdam: Elsevier Scientific Publishing Company.
Davies,
R.J., Mathias, S.A., Swarbrick, R.E. & Tingay,
M.J. 2011. Probabilistic longevity estimate for the
LUSI mud volcano, East Java. Journal of Geological Society 168: 517-
523.
Davies,
R.J., Swarbrick, R.E., Evans, R.J. & Huuse, M.
2007. Birth of a mud volcano: East Java. GSA Today 17(2): 4-9.
Davisson, M.L., Presser, T.S.
& Criss, R.E. 1994. Geochemistry of tectonically expelled fluids from
the Northern Coast Ranges: Rumsey Hills, California. Geochima et Cosmochima Acta 58(7): 1687-1699.
Delisle, G., Von
Rad, U., Andruleit, H., Von
Daniels, C., Tabrez, A. & Inam,
A. 2002. Active mud volcanoes on-and offshore eastern Makran,
Pakistan. Int. J. Earth Sci. 91(1): 93-110.
Deville, E. & Guerlais, S-H. 2009. Cyclic
activity of mud volcanoes: evidence from Trinidad (SE Caribbean) Mar. Pet.
Geol. 26(9): 1681-1691.
Dia, A.N., Castrec-Rouelle, M., Boulègue, J. & Comeau, P. 1999. Trinidad
mud volcanoes: where do the expelled fluids come from? Geochimica et Cosmochimica Acta 63(7-8): 1023-1038.
Dimitrov, L.I. 2002. Mud volcanoes - the most important pathway for
degassing deeply buried sediments. Earth Sci. Rev. 59(1-4): 49-76.
Garrett,
D.E. 2004. Handbook of Lithium and Natural Calcium Chloride: Their Deposits,
Processing, Uses and Properties. Amsterdam: Academic Press.
Grim, R.E.
1968. Clay Mineralogy. 2nd ed. New York: McGraw-Hill. p. 596.
Higgins,
G.E. & Saunders, J.B. 1974. Mud volcanoes- their nature and origin.
Contribution to geology and palaeobiology of the
Caribbean and adjacent areas. Verh. Naturfosch. Ges. 84: 101-152. https:// www.idntimes.com/travel/destination.
Accessed on 27 July 2022.
Husein, S. 2015. The International Geology Course Programme. Petroleum
and Regional Geology of Northeast Java Basin, Indonesia. 7-11 December
2015. 10.13140/RG.2.1.2408.3280
Ibrahim, G., Subardjo & Sendjaja, P. 2010. Tektonik dan Mineral di Indonesia. Jakarta: Badan Meteorologi Klimatologi dan Geofisika.
Indriana, R.D., Nurwidyanto, M.I. & Haryono, K.W. 2007. Interpretasi bawah permukaan dengan metode self
potential daerah Bledug Kuwu Kradenan Grobogan. Berkala Fisika 10(3): 155-167.
Kopf, A. & Deyhle, A. 2002. Back to the roots: Boron
geochemistry of mud volcanoes and its implications for mobilization depth and
the global B cycling. Chem. Geol. 192(3-4): 195-210.
Kopf, A., Deyhle, A., Lavrushin, V.Y., Polyak, B.G., Gieskes, J.M., Buadnidze, G.I., Wallmann, K.
& Eisenhauer, A. 2003. Isotopic evidence (He, B, C) for deep fluid and mud
mobilization from mud volcanoes in the Caucasus continental collision zone. Int.
J. Earth Sci. 92: 407-425. doi.10.1007/S00531-003- 0326-y
Le Pichon, X., Foucher,
J.P., Boulégue, J., Henry, P., Lallemant, S., Benedetti, M., Avedik, F. & Mariotti,
A. 1990. Mud volcano field seaward of the Barbados accretionary complex: A
submersible survey. J. Geophys. Res. 95(B6): 8931-8943.
Lina, C., Rui, M., Paula, F.,
Claudia, M., Eduarda, P., Vitor,
M., Luis, P. & Carlos, V. 2019. Rare earth elements in mud volcano
sediments from the Gulf of Cadiz, South Iberian Peninsula. Sci. of the Total
Environment 652: 869-879.
Maslov, A.V., Shevchenko, V.P. & Bychkov, A.Y.
2021. The distribution of trace elements in mud volcano sediments: Searching
for features of a juvenile component impact. Moscow Univ. Geol. Bull. 76:
436-444. https://doi.org/10.3103/S0145875221040086
Martin,
J.B., Kastner, M., Henry, P., Le Pichon, X. & Lallsment, S. 1996. Chemical and isotopic
evidence for sources of fluids in a mud volcano field seaward of the Barbados
accretionary wedge. J. Geophys. Res. 101: 20325-20345.
Mazzini,
A. & Etiope, G. 2017. Mud volcanism: An
updated review. Earth Sci. Rev. 168: 81-112.
McGill,
I.J. 1993. Mathey rare earth elements. Ullmann
́s Encyclopedia of Industrial Chemistry. Weinheim:
Wiley-VCH. pp. 607-649.
Milkov, A.V. 2000. Worldwide distribution of submarine
mud volcanoes and associated gas hydrates. Marine Geology 167: 29-42.
Mori, J.
& Kano, Y. 2009. Is the 2006 Yogyakarta earthquake related to the
triggering of the Sidoardjo, Indonesia mud volcano? Journal
of Geography 118(3): 492-498.
Munasir, M., Triwikantoro, T., Zainuri, M.
& Darminto, D. 2012. Uji XRD dan XRF pada bahan meneral (batuan dan pasir) sebagai sumber material cerdas (CaCO3 dan SiO2). Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 2(1): 20-29.
Naimi, S. & Ayoubi, S.
2013. Vertical and horizontal distribution of magnetic susceptibility and metal
contents in an industrial district of Central Iran. J. Appl. Geophys. 96: 55-66.
Nurhandoko, B.E.B., Kurniadi, R., Susilowati, Triyoso, K., Sri Widowati,
Asmara Hadi, M.R., Rizal Abda,
M., Martha, R.K., Elfa Fatiah & Rizal Komara, I. 2019. Integrated subsurface
temperature modeling beneath Mt. Lawu and Mt. Muriah in The Northeast Java Basin,
Indonesia. Open Geosciences 11(1): 341-351. https://doi.org/10.1515/geo-20190027
PANalytical B.V. 2009. X-ray Fluorescence
Spectrometry. http://www.panalytical.com/index. cfm?pid=130.Accessed on 30 September 2009.
Queiber, M., Burton, M., Arzilli,
F., Chiarugi, A., Marliyani,
G.I., Anggara, F. & Harijoko,
A. 2017. CO2 flux from Javanese mud volcanism. Journal of
Geophysical Research: Solid Earth 122(6): 4191-4207.
Rugayya, S. & Suryanto, W. 2019. Characterization
of seismic signals at Bledug Kuwu using goodness-of-fit criteria analysis. Journal of Physics: Conference
Series. 1242: 012050. 10.1088/1742-6596/1242/1/012050
Rizqiya, F. 2014. Analisis struktur fraksi fasa kristal natrium klorida dari Brine Water Bledug Kuwu sebagai fungsi waktu kristalisasi berdasarkan pola difraksi sinar X (X Ray
Diffraction). Sarjana. Universitas Islam Negeri Sunan Kalijaga,
Yogyakarta (Unpublished).
Rohmah, M., Lalasari, L.H., Wahyuadi,
J. & Natasha, N.C. 2018. Lithium recovery from Bledug Kuwu mud volcano using water leaching method. 2018
IEEE International Conference on Innovative Research and Development (ICIRD). 11-12 May.
Sabdaningsih, A. 2018. MITOLOGI DAN SAINS: Bledug Kuwu di Kabupaten Grobogan. Sabda: Jurnal Kajian Kebudayaan 13(1): 7-17. doi.org.10.14710/sabda.13.1.7-17
Sari,
I.G.A.A.S. & Warmada, I.W. 2021. IOP
Conf. Ser.: Earth Environ. Sci. 851: 012042.
doi.10.1088/1755-1315/851/1/012042
Satyana, A.H. & Asnidar.
2007. Mud diapirs and mud volcanoes in depression of Java to Madura: Origins
nature and implications to petroleum system. Annual Convention &
Exhibition Indonesia: Indonesian Petroleum Association 32: 139.
Sa'diyah, K., Syarwani, M. & Hadiantoro,
S. 2017. Adsorption of nickel in nickel sulphate solution (NiSO4) by Lapindo mud. Jurnal Bahan Alam Terbarukan 6(1): 39-44.
Scimeca, M., Bischetti, S., Lamsira, H.K., Bonfiglio, R.
& Bonanno, E. 2018. Energy dispersive X-ray (EDX)
microanalysis: A powerful tool in biomedical research and diagnosis. European Journal of Histochemistry: EJH 62(1): 2841. https://doi.org/10.4081/ejh.2018.2841
Siregar, S. & Siregar, N.I. 2016. Analisis dan pemanfaatan unsur belerang dan salinitas lumpur Bledug Kuwu di Desa Kuwu, Kecamatan Kradenan, Kabupaten Grobongan, Jawa Tengah. POSITRON: Berkala Ilmiah Fisika 6(1): 40-42.
Smallman,
R.E. & Bishop, R.J. 2000. Modern Physical Metallurgy and Materials
Engineering. New York: Hill International Book Company.
Srodon, J. 1999. Nature of mixed-layer clays and
mechanisms of their formation and alteration. Annu.
Rev. Earth Planet Sci. 27: 19-53.
Sudarningsih, S., Bijaksana, S., Ramdani, R., Hafidz, A., Pratama, A., Widodo, W., Iskandar, I., Dahrin,
D., Fajar, S.J. & Santoso,
N.A. 2017. Variation in the concentration of magnetic minerals and heavy metals
in suspended sediments from Citarum River and
tributaries, West Java, Indonesia. Geosciences 7: 66.
Sulistiyono, E., Lalasari, L. H., Mayangsari,
W. & Prasetyo, A. 2018. Study of lithium
extraction from brine water, Bledug Kuwu, Indonesia by the precipitation series of oxalic acid
and carbonate sodium. AIP Conference Proceedings 1964: 020007.
Sumarno, S., Ratnawati, R.
& Nugroho, A.N.A. 2012. Recovery garam lithium dari air asin (Brine) dengan metoda presipitasi. Teknik 33(2): 67-69.
Talas, E., Duman, M., Küçüksezgin, F., Brennan, M.L. & Raineault, N.A. 2015. Sedimentology
and geochemistry of mud volcanoes in the Anaximander Mountain Region from the
Eastern Mediterranean Sea. Marine Pollution Bulletin 95(1): 63-71. https://doi.org/10.1016/j.marpolbul. 2015.04.042
Tran,
K.T., Van Luong, T., An, J.W., Kang, D.J., Kim, M.J. & Tran, T. 2013.
Recovery of magnesium from Uyuni Salar brine as high
purity magnesium oxalate. Hydrometallurgy 138: 93-99.
Vignesh,
A., Ramanujam, N., Rasool, Q. & Swapan, K.B. 2016. Geochemical evidence for provenance,
tectonic settings, and presence of gas hydrate in mud volcano sediments of Andaman
Islands. Oil Gas Res. 2: 111. doi:10.4172/2472- 0518.1000111
Zainudin, A., Badri, I., Padmawijaya,
T., Humaida, H. & Sutaningsih,
E. 2010. Fenomena Geologi Semburan Lumpur Sidoarjo.
Bandung: Badan Geologi, Kementerian Energi dan Sumber Daya Mineral.
Zhang, C., Qiao, Q., Appel, E. & Huang, B. 2012.
Discriminating sources of anthropogenic heavy metals in urban street dust using
magnetic and chemical methods. Journal of Geochemical Exploration 119-120: 60-75.
*Pengarang untuk surat-menyurat; email: rinadwiindriana@lecturer.undip.ac.id
|